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Abstract—Game theory has been applied to model power
control in wireless systems for years. Conventional power con-
trol games tend to consider unlimited backlogged user traffic.
Different from the conventional methodology, this paper aims
to investigate limited backlogged data traffic and construct a
game-theoretic model tackling both one-shot and repeated power
control problem in which variable user traffic demand needs to be
taken into consideration. To improve the network performance in
such situation, we devise a new SINR pricing scheme and propose
an algorithm to calculate an optimal price. With this optimal
price, we prove that the Nash equilibrium is Pareto efficient and
max-min fair.

I. INTRODUCTION

Uplink power control is critical to CDMA systems where
users compete for limited network resource and the actions of
users make direct impact on one another. Such characteristic
makes game theory a suitable base to model uplink power
control problem. In contrast to the conventional unlimited data
assumption, we investigate a power control problem in which
user traffic demand varies. We use game theory and design
a pricing scheme to prevent the waste of network resource,
which leads to an efficient Nash equilibrium.

Extensive research has been done in power control prob-
lems. Koskie and Gajic, for instance, provide an overview of
power control problems [1]. As Meshkati et al. mention [2],
there are two kinds of utility function. Alpcan et al. construct
a model based on Shannon capacity to show that the Nash
Equilibrium is unique [3]. Altman et al. discuss two types of
decision making: the centralized system and the decentralized
system, the former corresponds to cellular network while the
latter to ad hoc network [4]. Gunturi et al. propose a linear
pricing scheme based on power level to show the system
converges to a unique NE [5]. Goodman et al. propose a model
considering transmission error [6]. A more efficient model
adopting the linear pricing scheme is later proposed [7].

We aim to solve the power control problem by proposing a
new pricing scheme that is a linear function of SINR. Since the
purpose of pricing is to eliminate the waste of system resource,
the criterion of pricing should be related to the usage of
common resource. Therefore, the power level, which consumes
user’s own energy, is not an ideal criterion of pricing. On the
contrary, since every user competes for throughput on which
SINR has direct effect, a more ideal criterion could be based on
SINR. In addition to the pricing scheme, unlike conventional
power control games focusing on unlimited data traffic, we
formulate a game in which the traffic demand is limited, as

this might be the case for the future generation high-speed
wireless data networks.

II. SYSTEM MODEL

We begin this section with a one-period game. The set N
contains n users, each of which is endowed with the traffic
demand Mi to upload to the base station, i = 1, 2, . . . , n. Each
user cares only its own uploading traffic and adjusts its power
level to maximize its throughput. The SINR of the user i is:

γi =
pi∑

j ̸=i pj +N0
(1)

where pi ∈ [0, p̄i] refers to the power level of the user i and
N0 the noise. Channel gain is not included in this equation,
since we consider the received power at the base station.

The valuation function vi of the user i is Shannon Capacity
δ log(1 + γi), where δ is a constant transferring the unit
of the valuation function to become identical to the unit of
demand. Since the demand is limited, two conditions are
concerned: 1) δ log(1 + γi) ≥ Mi implies the demand is met;
2) δ log(1 + γi) < Mi implies the demand is not met. The
valuation reaches its maximum when the demand is met. With
the pricing scheme, the utility function of the user i is:

ui = vi − cγi = min[Mi, δ log(1 + γi)]− cγi (2)

The following proposition indicates that the price influences
the willingness of user’s participation in this game.

Proposition 1 No user joins the system if c ≥ δ.
It can be showed that the utility is negative when c > δ and

is zero when c = δ. Since the price cannot be negative, the
price must fall within the range of 0 ≤ c < δ.

Definition 1 The required SINR γc
i is the SINR with which

the user i exactly meets its demand.

γc
i = e

Mi
δ − 1

The definition is derived from δ log(1 + γc
i ) = Mi. When

one’s SINR exceeds the required SINR, the user meets the
demand. Before deriving the equilibrium, we first discuss the
problem of finding the corresponding vector of power when the
desired vector of SINR is given [1]. When such corresponding
vector of power exists, the desired vector of SINR is called
feasible. The problem is solved by Sampath et al. [8] who
prove that the vector of SINR is feasible if the following
feasibility condition holds.
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n∑
j=1

1
1
γj

+ 1
≤ 1− N0

min
i

[p̄i(
1
γi

+ 1)]
(3)

Thereinafter, a vector of SINR may not be feasible. How-
ever, we focus on the feasible vector of SINR throughout this
paper and derive the price optimizing the system performance.
Moreover, when the vector of SINR is feasible, the corre-
sponding vector of power can be calculated by solving the
simultaneous equations. Therefore, we consider SINR to be
the strategy rather than power in the following sections.

The optimal SINR is defined as the SINR with which the
user maximizes the utility. We show that a user has two
possibilities of the optimal SINR as follows.

Lemma 1 The user i has two possibilities of the optimal
SINR, denoted by γ

∗(1)
i and γ

∗(2)
i respectively.{

γ
∗(1)
i = γc

i , γi ≥ e
Mi
δ − 1

γ
∗(2)
i = δ

c − 1 , γi < e
Mi
δ − 1

(4)

Proof:
• Case I: γi ≥ e

Mi
δ − 1

With the equivalent condition δ log(1+γi) ≥ Mi, the util-
ity of the user who can meet its demand is ui = Mi−cγi.
We then derive ∂ui

∂γi
= −c < 0, which implies once the

user meets its demand, the utility would only decrease.
Thus, the user has to meet its demand exactly. Formally,
δ log(1 + γ

∗(1)
i ) = Mi. Equivalently, γ∗(1)

i = e
Mi
δ − 1.

• Case II: γi < e
Mi
δ − 1

With the equivalent condition δ log(1 + γi) < Mi, the
utility of the user who fails to meet its demand is ui =
δ log(1 + γi) − cγi. To prove that the utility function is
concave and has its maximum, we have ∂2ui

∂γ2
i
= −1

(1+γi)2
≤

0 and ∂ui

∂γi
= δ

1+γ
∗(2)
i

· ∂γ
∗(2)
i

∂pi
− c

∂γ
∗(2)
i

∂pi
= 0. Therefore,

the maximum is γ
∗(2)
i = δ

c − 1.

Either of the two possibilities corresponds to one mutual
exclusive domain of the strategy space. Besides, Lemma 1
rules out other possibilities, leaving only two. In next theorem,
we prove the user has only one possibility of the optimal SINR.

Theorem 1 The optimal SINR of the user i is:

γ∗
i =

{
γc
i ,Mi ≤ δ log δ

c
δ
c − 1 ,Mi > δ log δ

c

(5)

The proof is similar to the proof of Lemma 1. Theorem 1
shows that the optimal SINR is determined by the demand
of the user. In addition, since the boundary of condition is a
function of δ and c, the base station can decide the number of
user meeting the demand by choosing a proper price.

We denote the boundary of demand in Theorem 1 by the
threshold demand Mth = δ log δ

c and denote the required
SINR of Mth by the threshold SINR γth = e

Mth
δ −1 = δ

c −1.
Then there are two kinds of users: 1) the users endowed with
demand Mi ≤ Mth are contained in ΩC ; 2) the users endowed
with demand Mi > Mth are contained in ΩN .
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Fig. 1. Utility of the user in ΩC and ΩN

Therefore, the users belonging to ΩC can meet the de-
mand, while the users belonging to ΩN cannot. Note that
ΩC

∪
ΩN = N and ΩC

∩
ΩN = ϕ.

For instance, one user endowed with M = 2.5 belongs
to ΩC and the other endowed with M = 4 belongs to ΩN .
Fig.1(a) and Fig.1(b) demonstrate the utility functions of these
two users respectively. For the user belonging to ΩC , it has
already met the demand before reaching γ∗(2). Thus it chooses
γ∗(1) to be the optimal SINR. On the other hand, the user
belonging to ΩN chooses γ∗(2), since the user would obtain
lower utility when choosing γ∗(1).

We find the optimal SINR is uniquely determined by the
demand, and not affected by other users. Thus, the equilibrium
is uniquely determined by the optimal SINRs of users, and
then by the demand distribution of users.

Definition 2 Let Si be the strategy set of the user i, where
Si = [0, p̄i]. Denote S = S1×S2 . . .×Sn as the strategy profile,
and S−i the strategy profile except Si. The Nash Equilibrium
(NE) with the strategy vector (p∗i , p

∗
−i) is that:

ui(p
∗
i , p

∗
−i) ≥ ui(pi, p

∗
−i) ∀pi ∈ Si, p

∗
−i ∈ S−i,∀i (6)

Theorem 2 If the vector of optimal SINR is feasible, there
is a unique NE where all users adopt the optimal SINR.

γ∗
i =

{
γc
i , i ∈ ΩC

γth , i ∈ ΩN

The existence of NE is directly based on the feasibility of
the vector of optimal SINR. Likewise, NE is unique since the
optimal SINR is unique for all users.

III. OPTIMAL PRICE

The notation optimality is used twice throughout this paper.
One represents the best reaction, denoted by the optimal
SINR. The other represents the price optimizing the system
performance in NE, denoted by the optimal price. We derive
the optimal price in this section.

If the price decreases, the optimal SINRs of all users belong-
ing to ΩN increase, and the total throughput rises along with
it, which improves the system performance. However, when
some of the optimal SINRs raise, the feasibility condition (3)
may be violated (i.e., the vector of optimal SINR becomes
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infeasible), which is an unwanted result. On the other hand, if
the price increases, the optimal SINRs of all users belonging to
ΩN decrease, and so does the total throughput, which worsens
the system performance. Therefore, the optimal price should
be a price that optimizes the total throughput without violating
the feasibility condition (3).

Definition 3 The optimal price c∗ is the lowest price such
that the vector of the optimal SINR is feasible. Formally,

c∗ = min{c | γ∗ is feasible} ,where γ∗ = (γ∗
1 , γ

∗
2 , . . . , γ

∗
n)

We have 0 ≤ c∗ < δ directly from Proposition 1. Moreover,
if the optimal price is adopted, the NE has two properties:
Pareto efficiency and max-min fairness.

Definition 4 Let Si be the strategy set of the user i, where
Si = [0, p̄i]. Denote S = S1 × S2 . . . × Sn as the strategy
profile, and denote S−i as the strategy profile except Si. The
Pareto efficient strategy set (p∗i , p

∗
−i) is that:

vi(p
∗
i , p

∗
−i) ≥ vi(pi, p−i)∀pi ∈ Si,∀p−i ∈ S−i,∀i (7)

In Pareto efficient NE, any increasing of valuation of one
user must be in the expense of the decrease of valuation of
some other users. There is no way that users can increase their
valuation simultaneously.

Theorem 3 If the optimal price is adopted, the Nash Equi-
librium is Pareto efficient.

Proof: There are two cases. If all users belong to ΩC , then
the valuation of all users reach the maximum. Hence, the NE
is Pareto efficient. On the other hand, if some users belong
to ΩN , for the user i whose pi = p̄, then the only way to
increase its valuation is to decrease the power of other users,
which lowers the valuation of certain users.

Definition 5: A strategy set S is max-min fair if and only
if for all users, any increase of the valuation must be at a cost
of decrease of some originally smaller valuation. Formally, for
any other S′ such that vi(S′) > vi(S), there must exist at least
one user j such that vi(S) ≥ vj(S) and vj(S

′) < vj(S).
In max-min fair equilibrium, the user originally with lower

valuation has better chances to increase its valuation without
violating the max-min fairness. On the contrary, the user with
higher valuation tends to violate the max-min fairness.

Theorem 4 When the optimal price is adopted, the Nash
Equilibrium is max-min fair.

Proof: From Theorem 3, it is shown that any increase of a
user’s valuation decreases the valuation of some other users.
For the users belonging to ΩC , there is no way to increase their
valuation. For the users belonging to ΩN , since all the other
users have at most the equal valuation as them, any increase
of their valuation certainly lowers some of originally smaller
valuation.

Therefore, the base station can optimize the total throughput
by adopting the optimal price. In the next section, we design
an algorithm to calculate the optimal price.

IV. ALGORITHM DESIGN

The algorithm is denoted by Binary Convergent Pricing
Algorithm (BCPA). To calculate the optimal price, the base

station needs the information about the traffic demand Mi and
the upper bound of power p̄i of all users.

Simply speaking, BCPA has five steps:
1) Sort users according to the demand in an ascending

order, and group the users who share the same demand.
2) Store the minimal value of p̄i in every group.
3) Set the price c to δ/2. (i.e., the middle of 0 ≤ c < δ.)
4) If the vector of optimal SINR is feasible, decrease the

price c. Otherwise, increase price c.
5) Do step 4 recursively by binary approximation. Ter-

minate when the vector of optimal SINR is about to
become infeasible, and then return the price.

BCPA is used in the numerical result. To generalize the
result, we derive the two-period model in the next section.

V. REPEATED STAGES

In this section, we give the insight of the multi-period model
by deriving the last two-period model. Consider the finite-
period model with the period T − 1 and T , where the period
T is the last period before the game ends. The length of the
period T−1 is the same as that of the period T . The valuation
vT−1
i is the sum of the valuations during the two periods. We

denote the arriving demand before the period T−1 and before
the period T by MT−1 and MT respectively. The demand at
the period T − 1 will be accumulated if it is not met.

At the period T , since all users know there is no next period,
the equilibrium is the same as Theorem 1. Thus, the optimal
price at the period T is the optimal price in the one-period
game, denoted by cT . In this section, we derive the optimal
SINRs at the period T − 1. Note that the optimal price at the
period T is affected by the strategy at the period T−1, because
part of the demand MT−1 will be accumulated to the period
T when the demand is not met. The remaining definitions are
the same as those of the one-period game.

The strategy in two-period game is determined at the period
T−1. The user can manipulate the strategy at the period T−1
to make itself meet the demand at the period T or not.

• i ∈ ΩC
T (i.e., the demand at the period T is met) iff

δ log(1+ γT
i ) ≥ MT +max[0,MT−1− δ log(1+ γT−1

i )]
(8)

• i ∈ ΩN
T (i.e., the demand at the period T is not met) iff

δ log(1+ γT
i ) < MT +max[0,MT−1− δ log(1+ γT−1

i )]
(9)

Users belonging to ΩC
T or ΩN

T have different valuation
functions. The valuation of the user i at the period T − 1,
denoted by vT−1

i , is that:
• If i ∈ ΩC

T then

vT−1
i = MT−1 +MT (10)

• If i ∈ ΩN
T then

vT−1
i = min(MT−1, δ log(1 + γT−1

i )) + δ log
δ

cT
(11)

The user meets the demand at the period T implies that
both MT−1 and MT are met, since the remaining demand at
the period T − 1 would be accumulated. However, if the user
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fails to meet the demand at the period T . The reason could
be either the accumulation of MT−1 plus MT or merely MT

is too much to be met.
The reaction at the period T is determined by the strategy at

the period T −1. The following equation shows their relation.

δ log(1 + γT
i )

= min(δ log δ
cT

, MT +max[0,MT−1 − δ log(1 + γT−1
i )])

(12)
The second term in the operator min is the total demand at

the period T . If MT−1 is not met, the remaining demand will
be added to the demand at the period T . The first term is the
maximum of the second term, as we mention in Theorem 1.

The objective of the user i is to maximize the utility.

max
γT−1
i

uT−1
i

≡ max
γT−1
i

vT−1
i − cT γ

T
i − cT−1γ

T−1
i

subject to (10), (11), and (12)

We solve this optimization problem by dividing the domain
of strategy space into four parts.

• When δ log(1 + γT−1
i ) ≥ MT−1

1) By (12), we have

δ log(1 + γT
i ) = min(δ log

δ

cT
, MT ) (13)

Then we have δ log δ
cT

−MT ≤ 0.

i ∈ ΩN
T iff

{
δ log(1 + γT−1

i ) ≥ MT−1

δ log(1 + γT
i )−MT < 0

(14)

i ∈ ΩC
T iff

{
δ log(1 + γT−1

i ) ≥ MT−1

δ log(1 + γT
i )−MT = 0

(15)

• When δ log(1 + γT
i ) < MT−1

1) There are two cases under this condition.
– When{

δ log(1 + γT−1
i ) < MT−1

δ log(1 + γT−1
i ) < MT−1 +MT − δ log δ

cT
(16)

1) By (12), δ log(1 + γT
i ) = δ log δ

cT
.

2) δ log(1+γT
i )−(MT−1+MT −δ log(1+γT−1

i ))
< δ log δ

cT
− δ log δ

cT
= 0.

3) From (9), user i belongs to ΩN
T .

– When{
δ log(1 + γT−1

i ) < MT−1

δ log(1 + γT−1
i ) ≥ MT−1 +MT − δ log δ

cT
(17)

1) δ log(1+ γT
i ) = MT +MT−1 − δ log(1+ γT−1

i )
2) From (8), user i belongs to ΩC

T .
Proposition 2 Only the users belonging to ΩC

T can affect cT .
To prove it, we consider the case in which the demand

MT−1 is not met. For the users belonging to ΩN
T , no matter

how much the remaining demand is, they still cannot meet
the demand at the period T . On the contrary, for the users
belonging to ΩC

T , they can adjust their power to meet its new

demand. The original vector of the optimal SINR becomes
infeasible, so cT must be recalculated. The other case in which
MT−1 is met is similar to the former one. We can then solve
the optimization problem with this proposition.

1) Case I: From (15){
δ log(1 + γT−1

i ) ≥ MT−1

δ log(1 + γT
i ) = MT

User i belongs to ΩC
T . The utility function is:

uT−1 = MT−1 +MT − cT γ
T
i − cT−1γ

T−1
i

From Proposition 3, the user can affect cT . However,
since all demand is met, the user does not change cT .
The best reaction is:

B1 :

{
γT−1
i = e

MT−1
δ − 1

γT
i = e

MT
δ − 1

2) Case II: From (14){
δ log(1 + γT−1

i ) ≥ MT−1

δ log(1 + γT
i ) < MT

User i belongs to ΩN
T . The utility function is:

uT−1 = MT−1 + δ log
δ

cT
− cT γ

T
i − cT−1γ

T−1
i

The user cannot affect the price cT . From (13), we have
δ log(1 + γT

i ) = δ log δ
cT

. The best reaction is:

B2 :

{
γT−1
i = e

MT−1
δ − 1

γT
i = δ

cT
− 1

3) Case III: From (16){
δ log(1 + γT−1

i ) < MT−1

δ log(1 + γT−1
i ) < MT +MT−1 − δ

cT

User i belongs to ΩN
T . The utility function is:

uT−1 = δ log(1+γT−1
i )+δ log

δ

cT
−cT γ

T
i −cT−1γ

T−1
i

The user cannot affect the price cT . We have that
δ log(1 + γT

i ) = δ log δ
cT

. Hence, the best reaction is
similar to the one in the one-period game.

B3 :


γT−1
i =

 e
MT−1
cT−1 − 1, MT−1 ≤ δ log δ

cT−1
δ

cT−1
− 1, MT−1 > δ log δ

cT−1

γT
i = δ

cT
− 1

4) Case IV: From (17){
δ log(1 + γT−1

i ) < MT−1

δ log(1 + γT
i ) ≥ MT +MT−1 − δ

cT

User i belongs to ΩC
T . The utility function is:

uT−1 = MT−1 +MT − cT γ
T
i − cT−1γ

T−1
i

The user can affect the price cT . Also, δ log(1 + γT
i ) =

MT +MT−1 − δ log(1 + γT−1
i ). Since both cT and cT−1 are

the function of γT−1
i , the best reaction exists.
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Fig. 2. The effect of the pricing scheme

TABLE I
SIMULATION SETTING

p̄ M1 M2 Total Demand
User 1 10 0.21 0.21 0.42
User 2 10 0.21 0.37 0.58
User 3 15 0.37 0.21 0.58
User 4 20 0.37 0.37 0.74

Environmental setting: δ = 1, N0 = 1

The strategy space in the two-period model has four possi-
bilities of optimal SINRs. The result is similar to Lemma 1. If
we bring in proper assumptions, the NE then becomes similar
to that of the one-period game. Moreover, cT is equal to or
greater than cT−1 in the equilibrium; otherwise, some users
can obtain a higher utility by reserving some demand from the
period T − 1 to the period T .

VI. NUMERICAL RESULT

We show the influence of the proposed pricing scheme in
Fig.2. The x-axis represents the demand of users, and the y-
axis the throughput those users obtain in NE. Without pricing,
some users waste the resource. However, when the optimal
price is adopted, it can avoid such problem.

To observe the difference between NE in the two-period
model and in the one-period model, we devise two schemes
with two periods. The first scheme includes two one-period
games denoted by Game 1 and Game 2. The second scheme
includes one two-period game. In the latter scheme, the
demand at the period 1 could be accumulated. The parameters
of both schemes are presented in Table I.

The result of the first scheme is in Table II. As Theorem 1
states, those users who fail to meet the demand share the same
throughput. On the other hand, the result of the second scheme
is presented in Table III. User 1, 2, 3, and 4 respectively
belongs to Case I, II, IV, and III in the previous section. At
the period 1, both User 3 and User 4 fail to meet the demand,
but, at the period 2, User 3 can meet M2 plus the remaining
demand of M1, while User 4 cannot, because the demand of
User 3 does not exceed the threshold demand so User 3 can
increase its power. Moreover, at the period 2, since User 3
chooses higher power level to meet the total demand, both
User 2 and User 4 suffer from lower throughput because of
the increase of power of User 3. The number of users meeting
the demand increases from one in the first scheme to two in the

TABLE II
FIRST SCHEME (ONE-PERIOD GAMES)

Game 1 Game 2 Summed
throughput throughput throughput

User 1 0.21 (100%) 0.21 (100%) 0.42 (100%)
User 2 0.21 (100%) 0.35 (95%) 0.56 (97%)
User 3 0.357 (96%) 0.21 (100%) 0.567 (98%)
User 4 0.357 (96%) 0.35 (95%) 0.707 (96%)

Price in Game 1: c = 0.6995
Price in Game 2: c = 0.7043

TABLE III
SECOND SCHEME (TWO-PERIOD GAME)

Period 1 Period 2 Total
throughput throughput throughput

User 1 0.21 (100%) 0.21 (100%) 0.42 (100%)
User 2 0.21 (100%) 0.345 (93%) 0.555 (96%)
User 3 0.359 (97%) 0.011(3%)+0.21 (100%) 0.58 (100%)
User 4 0.357 (96%) 0.345 (93%) 0.702 (95%)

Prices in Period 1: c1 = 0.6995
Prices in Period 2: c2 = 0.7082

second scheme. We conclude that the pricing scheme increases
the number of user whose demand is fully met.

VII. CONCLUSION

We investigate a SINR-based pricing scheme with limit
traffic demand. If the optimal price is adopted, the Nash
Equilibrium is Pareto efficient and max-min fair. To obtain
this optimal price, we design an algorithm called BCPA.
We also show that the multiple-period model has the similar
equilibrium as one in the one-period model. The best reaction
of the user is also determined by its traffic demand, and there
exists a unique Nash Equilibrium.
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